Ham Radio EMCOMM Go Kit – Battery Box

Battery Box (1)Battery Box (2)A portable battery system is a very handy item to have for ham radio in general (think field day, special event stations, etc.) and is essential for an EMCOMM kit. I based my battery box around a deep cycle lead acid battery and I ended up choosing a group 27 battery with a reserve capacity of 160 (66.7 Ah). Reserve capacity refers to the number of minutes a fully charged battery is discharged at 25 amps before the voltage drops below 10.5 volts. This figure can be converted to amp-hours by multiplying the reserve capacity by 0.4167. According the Battery School within a BCI group size, the battery with higher ampere-hours (or RC) will tend to have longer lives and weigh more because of thicker plates and more lead. While lead acid batteries are heavy, they are also versatile and can be continuously trickle charged to keep them at full charge until they are needed. A deep cycle battery is appropriate for this application since their power level can be drained very low without damaging the battery, unlike a typical car battery.

Battery Box (3)For ease of transport and to keep the wiring organized and neat I store my battery in a plastic battery box and hardwired it to a Rigrunner 4005 power distribution block mounted on the box. I went with a small Rigrunner since this system will only be used with a few items at a time (1 or 2 radios, inverter for laptop power, low voltage lighting, etc.). I keep the battery charged using a NOCO Genius G3500 charger which is smart enough to not overcharge the battery and powerful enough to recharge the battery at a decent rate. After years of thinking about it I finally got around to standardizing all of my power connections with Anderson Powerpoles which make 12V power connections very modular and interchangeable.

This is a very useful and simple project that performs well for my purposes. I could easily parallel another battery with this one for increased capacity if the need arises in the future. You could buy a premade battery box with a Rigrunner, but doing it yourself is a lot cheaper.

Ham Radio EMCOMM Go Kit – VHF/UHF

VHF Go Kit (7)Recently myself and others in my ham radio club have been getting more involved in emergency communications (EMCOMM) training and activities. As part of this effort to be better prepared for emergencies I decided to build a go kit or “station in a box” that could be used as a portable communications system.

VHF Go Kit (2)VHF Go Kit (1)Since VHF and UHF are the most used bands for EMCOMM I started with that. I already had a Kenwood TM-V71a dual band (2 Meter and 70cm) transceiver which is an ideal radio for this application. At full power it can output 50 watts and unlike many transceivers of this kind it features a data port on the back for easy connection to an external sound card (I use the SignaLink USB) for digital communications. It also has a detachable faceplate which allows for a lot of flexibility regarding where and how the transceiver body is mounted.

To house the electronics I chose the Monoprice 14″ x 16″ x 8″ weatherproof hard case which is similar to Pelican cases at a fraction of the price.

VHF Go Kit (4)VHF Go Kit (3)For power, I chose to include a 10 amp switching power supply in the go kit. I used the Astron SS-12 since its dimensions were such that it fit perfectly in the case when mounted next to the transceiver. In case 120V is not available, I can simply unplug the transceiver’s powerpole connection from the power supply and plug it into my battery box.

In order to mount all of the equipment in the case I built a base of 1/2″ plywood. The base consists of a single sheet cut to fit in the case glued on top of a four 1/2″ spacer blocks which raise the sheet above the bottom of the case. This serves two purposes:  first it negates the need to round the bottom edges of the sheet to match the curve of the case and second it doubles the thickness of wood that the mounting screws have to grip when screwed in through the bottom of the case. An added bonus of raising the sheet is that it provides space to store excess cable from the faceplate separation kit in an out of the way location.

VHF Go Kit (6)VHF Go Kit (9)Mounting the transceiver to the plywood is done using the mobile mounting bracket for the radio. The power supply is mounted by removing the rubber feet from the bottom of the power supply and replacing them with spacers and screws for a strong connection to the plywood. The microphone mount is also simply screwed to the plywood. The faceplate is mounted to the lid of the case using the separation kit mount which uses very strong double stick tape. The SignaLink is mounted to the top of the power supply using industrial strength velcro which allows for easy removal of the unit if I want to use it in a different configuration while holding it very secure when I want to leave it in the case.

VHF Go Kit (5)Before I mounted anything to the plywood I applied a coat of clear polyurethane. This not only makes the oak veneer look a lot better, it also seals the wood and provides some protection. The equipment was then mounted to the board and it was mounted in the case using 4 wood screws driven through the bottom of the case. In order to help restore the weatherproofing of the case I used silicone caulking to seal around the screw heads.

Overall I am very pleased with how this go kit turned out. To get on the air all I have to do is open the case, hook up power (either 120V or 12V), hook up the coax to the antenna and plug in the USB cable to my laptop if I need to run digital. In all it’s a very capable VHF/UHF station that weighs about 17 lbs and isn’t much bigger than a shoe box.