BITX40 QRP Transceiver

The BITX40 is an interesting project. It is an inexpensive ($59) QRP 40 meter band SSB (LSB only) transceiver that comes as a semi-preassembled kit. The main boards are built and tested by the manufacturer in India and the end user only has to mount the boards in a case and wire the power, controls, and antenna connections. The radio itself is controlled by an Arduino microcontroller using a version of the Raduino firmware and a digital synthesizer chip provides frequency stability. Due to its simple design it is easily modified and there are dozens of mods on the internet that can be performed to add features. My ham radio club did a group build project of this radio and we had over 20 members put together their own BITX40.

One of the most convenient features of this kit is that the main boards make use of connectors to simplify construction. This also makes the radio very easy to disassemble since nearly all of the wiring can be unplugged. The kit comes with all the parts you need (other than a case, speaker, and knobs), however, I made a few changes. I had a couple of 6mm shaft knobs that I wanted to use that did not fit the potentiometers that were supplied. I also wanted to implement a couple of the simplest and most useful mods. I ordered the following parts from Mouser:

The pushbuttons are useful due to the features added in the modified Raduino firmware. With the new firmware installed, the white pushbutton serves as a Menu button that provides access to the additional features included in the firmware (Multiple VFOs, RIT, Split, USB, CW, frequency calibration, scanning features, and many others). One of the interesting things about the firmware is that if you have it installed and do not add any buttons or other mods, it still behaves like the default firmware. Only when you perform the appropriate mods does the additional functionality become accessible.

Another mod I performed allows the red pushbutton to serve as a Tune button. When pressed the radio automatically switches to CW mode, keys the transmitter, and generates a tone to allow tuneup of an antenna tuner. This functionality actually requires 3 separate mods (PTT Sense, CW Carrier, and TX-RX) which are detailed in the updated firmware’s documentation. They involve soldering a couple of resistors to specific locations on the board as well as a transistor across the PTT line and wiring from these components to the Arduino’s IO points. In order to maintain my ability to easily disassemble the radio by removing the case’s front and rear panels, I used a 2 pin header to create my own connectors for plugging and unplugging some of the additional wires that were added for these mods. The final modification involved soldering a 100pF capacitor in parallel with the inductor L7. This helps suppress the 2nd harmonic to levels that are acceptable to the FCC.

For the speaker I drilled some holes in the top of the case to let the sound out and mounted the speaker.  I left the wires long so that it is easy to remove the top of the case and lay it to the side without having to unplug the speaker cable from the main board. Using a speaker is highly recommended for this radio instead of using headphones. This is due to the fact that the BITX40 has no AGC (although there are mods to add one) and consequently the audio from strong stations is drastically louder than weaker ones. This difference in volume could easily hurt your ears if you were wearing headphones.

An electret microphone element is provided with the kit and I wired it up with a pushbutton in a small enclosure to work as a hand mic. I secured the mic element and the shielded cable using hot glue. This arrangement required me to wire the mic and PTT lines to the same 1/8″ stereo jack on the front panel, even though they have separate connections to the main board. As basic as this setup is it functions well and I have had good audio reports on the contacts I have made using it.

The best word to describe using the BITX40 is funky. After years of using modern complex transceivers, the BITX is almost shocking for how simple it is. You tune around and adjust the volume, that’s about it. Nevertheless it works, as long as you abide by QRP operating procedure:  find the strongest station on the band and weight for them to call CQ or QRZ. It’s pretty impressive how simple this radio is and how little you really need to make contacts.

I put a fair amount of effort to construct this radio carefully, however, some of my ham club’s members who built their own ended up with a spaghetti of wires and their radios still functioned fine. Because all of the complex circuitry is pre-assembled and tested, the hardest part of this project is already done. That is a key part to this being a great project because it allows people of all skill levels to build something and be virtually guaranteed that at the end they will have a working radio. In my club we had people who had never soldered before build this radio (with plenty of guidance) and they were all smiles when we powered up their creation the first time. The combination of affordability and functionality make the BITX40 an amazing piece of technology and a fantastic addition to ham radio.

QRP Link Dipole Antenna

Dipole antennas are some of the simplest antennas to build in addition to being very efficient and solid performers. I wanted to make a simple dipole antenna for QRP portable operation that could be used on multiple bands. I also wanted it to be light enough to be supported by my light-duty 31 ft Jackite mast in an inverted V configuration.

Link dipoles are a great way to make a lightweight multi-band antenna because you only have one run of wire (vs a fan dipole), there are no traps or coils, and you don’t need a complicated and heavy balun (vs an off-center-fed dipole). Band selection is achieved by connecting or disconnecting the appropriate links to make the antenna as long or short as needed to work on the band you want. To keep the antenna as light as possible I used 26 AWG insulated stranded copper-weld wire from The Wireman (#534). This wire is small, but because it has a steel core it is stronger than pure copper wire would be. It also has very tough insulation that protects the wire very well and is exceedingly lightweight (1000 ft weighs under 1 lb, and I am only using about 66 ft).

For the physical links in the dipole I used Nite Ize MicroLock S-Biners. These are small polycarbonate double-carabiners that are more than strong enough and very light. I made a loop at each end of every antenna section and secured it using adhesive lined heatshrink tubing. While not the strongest connection this should be adequate for this application since the antenna is so light that there isn’t much strain on any one point. The electrical links in the dipole were made using Anderson Powerpoles. The antenna itself was cut for the 20, 30, and 40 meter bands. I am considering adding an 80 meter section in the future, but that may add too much weight.

The center feed-point was made using a small piece of 1/8″ acrylic. This was drilled for antenna wire strain relief as well as #8 bolts for the connection between the antenna and the coaxial feedline. I decided to forego using a 1:1 balun at the feed-point to save weight. The feed assembly is secured to the mast using wire ties. Since every mast section is tapered the assembly can only slide so far down from the top before it fits tightly to the mast. I adjusted the wire ties to place the peak a couple of feet down from the top where the mast is somewhat more substantial and can more easily support the weight of the antenna. For coax I have been using RG-58, again to keep the weight down. I may end up moving to RG-8X in the future if the mast can support it since it is much lower loss.

A handy feature of this antenna is how easy it is to put up. The mast is a good match for my car’s flag pole hitch mount (using a 2″ PVC spacer) and is strong enough to be freestanding. To erect the antenna I just have to secure the upper three sections of mast (the sections friction lock together), place the mast in the mount on my car, unroll the antenna, slide the feed-point onto the mast, connect the coax, push the rest of the mast up, and spread out & secure the antenna ends. I can be on the air in about 5 minutes.

All of my efforts to keep the antenna as light as possible definitely paid off. Together the antenna and winder weigh only 15 oz (not including feedline). This makes it a perfect match for the lightweight mast and a small QRP radio. I look forward to getting a lot of use out of this setup.

QRP Go Kit

After assembling a solid set of QRP gear this year I wanted to put everything into an easy to transport package. To house and protect the kit I used a Monoprice 13″ x 12″ x 6″ Weatherproof Hard Case. This case is the perfect size to fit my mcHF transceiver, and Elecraft T1 autotuner, along with a 3″ external speaker, hand microphone, and power cable. All together the case and equipment weigh a little under 7.5lbs.

With this kit, all I need is 12VDC power and an antenna and I am on-the-air. This should pair perfectly with a small battery and either my random wire or end fed half wave antennas that I built recently.

Update (March 2017)

After completing my mcHF’s new case I decided to update my QRP go kit accordingly. Since the new case has an internal speaker I was able to eliminate the external speaker from the kit. In its place I put a 6Ah Lithium-Iron-Phosphate battery. This should give me between 6 and 12 hours of runtime at 5 Watts output, depending on how much I transmit and what mode I am using. While more expensive than sealed lead acid batteries, LiFEPO4 batteries are lighter in weight, smaller in size, provide more usable amp-hours, and last many more charge-recharge cycles. This 6Ah model weighs about 1.75lbs, compared to 5lbs for a 7Ah sealed lead acid that actually provides less usable power. This iteration of the kit weighs a little under 9lbs, over 3lbs less than the previous version (including the lead acid battery) and it is more compact as well.

HF Random Wire Antennas

Resonant antennas have a lot of advantages: they are efficient, impedance matched to your transmitter and require minimal tuning. The main disadvantage of resonant antennas is that they are nearly always only usable over a single frequency band. Non-resonant antennas do not present a match on any band by default, however, they can be easily matched to a wide range of frequencies. One of the most common ways to match a transmitter to a non-resonant antenna is to use a 9:1 UnUn combined with an antenna tuner.

100W Random Wire

I built this version for field use and wanted to make the design as flexible as possible. To this end I built the antenna such that I can easily lengthen it when extra room is available. The default length is 53 feet and the antenna can be extended to 124.5 feet. These lengths were chosen because they are not resonant on any ham band. The 9:1 UnUn for this antenna uses a FT240-K ferrite toroid wound with 18AWG enamel wire. The UnUn is mounted to a DX Engineering Balun Bracket to provide a mounting point and antenna wire strain relief. The antenna extension was made by using two DX Engineering Wire End Insulators that are be bolted together for strain relief and Anderson Powerpoles for the electrical connection of the 14AWG antenna wire. For a counterpoise I made two 50 foot lengths using 24AWG speaker wire. I can also use the shield of the feedline coax and then isolate the antenna from the transmitter using a 1:1 Balun/Choke. I have used this antenna using only the 53 foot section of wire and was able to tune all of HF and made a few contacts using my HF Go Kit, although some bands required adjustment of the counterpoise length in order to be in range of the Yaesu FT-450’s antenna tuner.

QRP Random Wire

After experiencing some success with my high power version I decided to build a QRP version. The QRP 9:1 UnUn uses a FT140-43 ferrite toroid and is wound using 24AWG enamel wire. This combination should easily handle 10 watts. The physical construction of the UnUn itself uses the same strain relief technique as my End Fed Half Wave Matchbox, where 1/8″ acrylic is epoxied to the enclosure used to house the toroid. For this antenna I used 26AWG stranded copperweld and cut it to 29.5 feet with an additional extension to 53 feet. This should allow for quick and easy field deployment using my 31 foot lightweight fiberglass mast. I did some experiments with my QRP transceiver and my QRP Autotuner and was able to tune all of HF using this configuration and two 50 foot counterpoises.

Overall I think these random wire antennas are a good addition to my antenna arsenal. They are not necessarily the best option, however, they are very versatile and can prove useful when a simple multi-band antenna is required.

End Fed Half-Wave Antennas

Half wave dipole antennas are generally considered the reference point for all antennas in ham radio, especially on HF. When fed from the center, a dipole makes for an easy impedance match to 50 ohm coax. When fed off-center at an appropriate location (typically the 1/3 point) and fed with a 4:1 balun, the dipole becomes a solid multi-band antenna. Feeding a half wave antenna from the end, however, presents additional challenges because the impedance is in the thousands of ohms. In spite of this, end feeding antennas can be an incredibly convenient configuration because you only need one support (like a tree) and you can easily place your operating position at or very near to the feedpoint of the antenna. This has led to this antenna design to being very popular with portable operators and others who want an antenna that is easy to erect quickly.

QRP Matchbox

While researching this type of antenna I found a couple of blogs (here and here) that have a lot of good information regarding end fed half wave antenna designs. These designs rely on the principles used by the PAR Endfedz which consist of an impedance transformer between the antenna and transmitter as well as a capacitor across the feedpoint. Based on this design I made an impedance transformer using a FT140-43 ferrite toroid (this size toroid is overkill for a QRP application) with 27 turns on the secondary and 3 turns on the primary (24AWG enamel wire). This is then wired such that the start of both the secondary and primary are connected to the coax connection shield. The other side of the primary is connected to the coax center pin. The remaining secondary connection is the attachment point for the antenna. A 150pF is then wired across the coaxial connection. I used a 1000V mica capacitor since very high voltages are present at the feedpoint.

The matchbox was constructed using a 3.25″ x 2.125″ x 1.5″ ABS plastic box and 8-32 stainless steel hardware. To provide strain relief I epoxied a piece of 1/8″ acrylic to the back of the matchbox enclosure. I also made a strain loop at the end of the antenna wire for attachment to the acrylic sheet using an S hook. This allows the acrylic to carry the load of the antenna, not the antenna connection point. I also used pieces of acrylic for the end insulators since it is the perfect material to weave small wire through and lock it in place.

I wanted to experiment with the effectiveness of this matchbox with different antenna designs. I also wanted to test the antennas in a typical field installation configuration; in this case they were erected as a sloper with one end in a tree about 25 feet in the air and the feedpoint about 5 feet off the ground.

40/20 Meter Half-Wave

This antenna is a full size 40 meter half-wave with a tuning stub in the center to adjust the resonance of the antenna as a 20 meter full-wave. The tuning of this antenna was very straightforward; I simply tuned the main element for the center of the 40 meter band and then adjusted the 20 meter stub for the center of the 20 meter band. With the 26AWG stranded copperweld wire that I used the antenna ended up being about 62 feet long with a 2 foot long stub in the center. This antenna exhibits great bandwidth and easily covered both bands with under 2:1 SWR.

40/30 Meter Loaded Half-Wave

This antenna is a full size 30 meter half-wave with a loading coil/choke and tuning stub at the end of the antenna to provide resonance on 40 meters as well. The loading coil/choke consists of 55 turns of 24AWG enamel wire on a piece of 3/4″ PVC pipe. This coil is approximately 47uH of inductance, which should have an impedance of almost 3000 Ohms at 10MHz. The purpose of the coil is to choke off the current flow and electrically shorten the antenna on the 30 meter band while providing the necessary inductance to resonate the full antenna on the 40 meter band since it is shorter than a full half-wave on that band.

Tuning this antenna required a fair amount of trial and error because the 30 meter element and tuning stub length interact and affect the resonance on both bands. I initially trimmed the main element without the loading coil and had a good match with 42.5 feet of wire. After attaching the loading coil and several feet of tuning stub I found that the antenna appeared to be too short for 30 meter resonance and too long for 40 meter resonance. Eventually after several trimmings I found that a stub length of about 3 feet resulted in the 30 and 40 meter resonances tracking each other when I adjusted the length of the main element. I then added wire to the main element until I achieved a good match on both bands, in this case a main element of 48 feet works well. 30 meters is a narrow band and this antenna easily covers the entire band with under 2:1 SWR. Because of the loading coil, this antenna does not exhibit particularly high bandwidth on 40 meters, however, the purpose of this antenna is for QRP digital operation which does not involve a lot of tuning around, so it was trimmed to provide the best match at the low end of 40 meters and should have plenty of bandwidth for PSK and JT65 operation.

100W Matchbox

After my successful experiments with the QRP matchbox I wanted to build a more robust version for higher power applications. This requires the use of thicker gauge wire and a larger toroid to handle the higher currents and and more powerful magnetic fields. In this case I used 18AWG enamel wire wound on a FT240-43 ferrite toroid, which should easily handle 100 watts of power. A 27:3 turns ratio was used again as well as the same 150pF 1000V mica capacitor. I mounted the completed toroid in a 4″ x 4″ x 2″ NEMA 4X box and mounted it to a DX Engineering Balun Bracket. For the antenna connection I used 10-32 stainless steel hardware.

80/40 Meter Loaded Half-Wave

This antenna is constructed similarly to the 40/30 meter version described above. This time, however, the loading coil consists of 67 turns of 20AWG enamel wire on a piece of 1″ PVC pipe. This coil has an inductance of about 66uH which is required to achieve an appropriate amount of current choking at 7MHz. For strain relief I used 1/4″ Lexan sheet to make the connection points for the antenna and coil wires. I then epoxied the Lexan to the PVC coil form and bolted the connections using 10-32 stainless steel hardware. The coil was sealed using two coats of polyurethane.

I found this antenna to be easier to tune than the 40/30 meter version. This is most likely due to the larger difference in frequency ratio between the 80 and 40 meter bands vs the 40 and 30 meter bands. After trimming I found that a main element length of about 67 feet gave a good match across the 40 meter band. As anticipated this antenna has a limited 2:1 SWR bandwidth on the 80 meter band (about 90KHz). I decided to construct a way around this by adding a tuning stub to the end of the 80 meter section to allow for adjustment of which portion of 80 meters I wanted to operate in. Since the primary usage of this antenna would be for field deployment and emergency communications I would most likely need to be able to use it in the digital portion of the band (3.583MHz or so) as well as the higher end of the band (3.983-3.99MHz) where the ACS nets in my area take place. After some experimentation I found that the antenna was resonant in the voice section I wanted with an 80 meter stub 9 feet in length. I then made an additional 3 foot length of wire that I can add to the end using Anderson Powerpoles that shifts the resonance of the antenna to the digital portion of the band. This allows me to easily change the section of the 80 meter band I want to use by simply adding or removing this small section of wire. This additional wire has a very minimal effect on the 40 meter resonance of the antenna (around 10KHz) and does not prevent the antenna from achieving an SWR of under 2:1 across the entire band whether it is installed or not.

To assess the end fed’s performance I did a side by side comparison with my 80 meter loop skywire. I setup the end fed as a sloper with the loaded end supported by a tree about 25 feet in the air and the feedpoint about 3 feet off the ground. I then observed the signal strength when listening to the local ACS net on 80 meters. I found that I could copy everyone easily with the end fed half-wave, however, they were generally 1 or 2 S-units weaker than with my loop. I also used the End Fed Half-Wave during Winter Field Day and was able to easily make contacts on both 40 and 80 meters using both SSB and PSK31. With the winder this antenna weighs 4lbs, not bad considering the weight and bulk added by the matchbox. Overall I think this antenna is a very solid semi-compromise antenna for field use and will definitely be part of my Go Kit going forward.

Elecraft T1 QRP Autotuner Kit

img_0841In the months since I completed my mcHF SDR transceiver kit, I have thought about building a QRP antenna tuner to go along with it. After some investigating I came across the Elecraft T1 which is available assembled or as a kit and can handle 10W of continuous power. While I have never owned any Elecraft gear, they have a very good reputation and several people in my ham radio club swear by their equipment. The kit looked like a fun project and a perfect match for my QRP gear so I decided to order one.

img_0842The kit took about a 4.5 hours to complete. The included instructions are very detailed and do a good job of emphasizing critical parts of the build. The biggest issues arise in regard to several components that need to be mounted in a very specific way in order for the case to fit properly. The circuit boards are fairly tightly packed, but anyone with good soldering experience should have no problem assembling this kit.

img_0844img_0843The finished product is very compact and incredibly simple to operate. I really appreciate that the instructions are printed on the front label in case you forget. So far I have used it to tune a couple different antennas of various designs and it performs very well. It finds matches quickly and the relays aren’t annoyingly loud like some autotuners. I look forward to getting a lot of use out of this and my mcHF.

mcHF SDR Transceiver Kit

A huge part of the history of ham radio involves people building their own equipment. In fact that is how things started since at the beginnings of radio no commercial hardware was available. Over the years various companies and organizations have sold transceiver kits, but in recent years most of these have consisted of basic morse code only or single frequency single side band devices intended for digital communications. With the increased development of software defined radio (SDR), however, this is changing. Earlier this year I came across the mcHF SDR transceiver project and decided to purchase one of the kits. Unlike other basic transceiver kits the mcHF is a full featured radio with 80M-10M coverage, multi-mode support, variable bandwidth filtering, DSP (noise reduction, notch filtering, etc.), sound card interface, rig control, and band scope / waterfall capability. Not bad for a $388 kit.

mcHF (1)mcHF (2)The project was originated by Chris, M0NKA in the UK about 2 years ago and the design has gone through a number of revisions resulting in the current v0.5, which is what I purchased. One of the major reasons I was willing to undertake this project was that the kit offered by Chris includes the circuit boards already populated with about 95% of the surface-mount parts, including all of the tricky to solder chips and super tiny resistors and capacitors. The only remaining parts to install are larger, and therefore easier to solder, surface-mount parts and standard through-hole components. The builder also has to hand wind several toroid inductors and transformers. You also have to provide your own final power amplifier MOSFETs, shielding plate between the boards, and case for the radio. These requirements go along with the way this kit is sold, which is to say bare bones. The kit includes zero instructions. The builder is responsible for sorting through the mcHF downloads page, the mcHF Yahoo group, and the Github Wiki to find the details regarding how to wind the toroids and transformers as well as details on any recommended mods and instructions for how to use the radio.

Since this project is open source, both the hardware and firmware have undergone considerable development. In fact, from the time I started building the board to when when I completed the project a large firmware update was released which revised the main screen and menu layout as well as added a number of fixes and features, including the ability to control the transceiver via the USB port and detect the transceiver as a sound card device with a PC.

mcHF (3)The mcHF consists of two circuit boards called the UI board and the RF board. I built the UI board first, and then built the power supply section of the RF board so that I could power up and test the UI board. Chris has a very helpful document on the mcHF webpage that steps through the process of installing the bootloader and uploading firmware to the CPU on the UI board. So after only about 4 hours of work I had a functional UI board.

mcHF (7)Next I completed the remainder of the RF board, which was fairly time consuming since winding toroids and transformers is a tedious operation. Documentation exists for how to wind the transformers, however, the only information regarding the toroids is on the RF board schematic which details how many windings each core requires. Extra attention should be paid to stripping the enamel wire used for the toroids and transformers. Even though I diligently sanded off the outer coating and thought that I had solid solder connections to the board, I did not do a good enough job on two of the toroids which prevented the radio’s operation on the 80M band. After desoldering and re-sanding the wires I achieved a good electrical connection and consequently 80M functionality.

mcHF (10)mcHF (11)This portion of kit construction is somewhat confusing because there are a ton of possible mods for the various transformers that can improve performance of the final power amplifier. I decided to build mine in the default configuration which results in a solid 5W output on 80M-12M and about 4W on 10M. When modified, users report 10 or more watts of power output. The only modification I made was with regard to the SWR bridge where RG-178 coax is used in place of a single winding of enamel wire. Construction details for many of these mods are available in a document on the Yahoo group produced by Clint, KA7OEI who has done considerable work on both the hardware and software of the mcHF.

Although not technically a mod, I did add a resistor that is regarded as “optional” on the UI board schematic. This resistor provides power for when an electret microphone is used. Since I would be modifying an Icom HM-36 I had lying around to work with the mcHF, I needed to install this resistor in order for the microphone to function. For this I used a standard 1/4W resistor since I had on of the correct value in my junk box and just soldered it to the surface mount pads. In order to avoid shorting with nearby components I carefully shaped the resistor’s leads and used electrical tape to insulate between the parts.

mcHF (5)mcHF (6)After completing construction of the boards, I turned my attention to completing the radio as a whole. The first step of this was to construct the shield plate between the boards. For this I used a thin mcHF (12)sheet of aluminum that I hand cut, drilled and nibbled according to a pattern available on the mcHF website. I then test fit and assembled the board and shield sandwich to check for proper clearance. When I was satisfied I completed the assembly using 5mm standoffs.

mcHF (19)mcHF (17)If you look around the web you will see a lot of people who have built the mcHF using the same case. This case is sold by Artur, SP3OSJ from Poland for about $63. If you email him at asnieg@epf.pl he will give you the details for how to order. The case comes with all of the knobs and buttons as well as a small piece of acrylic to protect the LCD display. The front panel is pre-machined, however, the endplates are left to the builder to complete. I also had to file some of the button holes to allow smooth operation and I had to sand the acrylic to fit the opening in the case.

mcHF (8)mcHF (9)Since the case serves as the heatsink for the power supply circuitry as well as the final amplifier transistors, a good mechanical connection between the components and the case is necessary. To mcHF (13)mcHF (14)accomplish this I soldered brass #4-40 nuts to the heatsink fin on power supply and amplifier components. I then drilled holes in the case to match where these nuts line up when the case is mcHF (15)assembled. When bolts are inserted and tightened, the electrical components are pulled tight to the wall of the case. In order to achieve a properly aligned connection, I had to grind away a small amount of material where the final amp transistors contact the case (note the hole I drilled in the wrong location due to my inability to follow the old rule of measure twice drill once). The last step in construction was labeling the buttons and ports, which I did using vinyl self-adhesive labels and my laser printer.

The final adjustment before testing the transmitter involves setting the proper bias for the final amplifier and then setting the transmitter gain for each band of operation. Documentation for these adjustments is on the Github Wiki. Basically you set the bias in one of the mcHF’s menu settings while keying the transmitter with no audio present as you watch the current draw of the radio. The transmitter gain is also a menu setting. These adjustments can be accomplished with an ammeter and a RF power meter.

mcHF (16)Finally, after about 20 hours of work I put my mcHF on the air. After adjusting my microphone gain I made a contact on 40M SSB. I then plugged the transceiver into my PC and fired up WJST-X. Following the guide on the Github Wiki I was able to get rig control working and made a half dozen contacts using JT65 on the 30M band using nothing but the mcHF and my laptop. The next day I checked into my local 10M SSB net and received good signal and audio reports from the other regulars who are familiar with my voice.

Overall I have to say that I am incredibly happy with the mcHF kit. It has been a great learning experience and the radio itself is an incredibly capable and configurable device that offers a lot of bang for your buck. I plan to use the mcHF quite a bit in the future and look forward to any future firmware updates. I also hope that this kit leads to other similar kits in the future that can help get more hams back to building equipment.

I highly recommend this kit for anyone with some electronics experience. While the documentation has not been collected into one easily digestible package, the kit itself is actually very straightforward to put together and I was able to get it on the air with only a cheap multi-meter and an RF power meter. It is also an incredible bargain for such full featured radio; I spent under $500 total for the kit, case and other ancillary parts (not including the microphone) which is not bad at all when you compare this to what is available commercially.