Baluns & Ununs

Anyone building antennas will come across designs that either recommend or require the use of a balun or unun. The design and construction of these components can get quite complex and are beyond the scope of this blog and my own knowledge. In short these devices act as impedance transformers from balanced loads to unbalanced loads (balun) or from unbalanced loads to unbalanced loads (unun). They can also be used as a common mode choke to eliminate any RF on a coax feed line’s shield. That said, it is actually quite easy to construct your own baluns and ununs and to learn something in the process. You can also save a considerable amount of money.

1-1 Balun (2)1-1 Balun (1)Amidon sells a good starter kit for building baluns and ununs. It includes everything you need including a book with dozens of designs with various impedance transforming characteristics. 1-1 Balun (6)1-1 Balun (3)I used this kit to make a 1:1 balun. Since the kit uses 14AWG wire, it should be capable of handling 2KW of power continuously. This is overkill for me since I will never be putting more than 100W through the balun. The 1:1 balun is essentially a choke that blocks current flow on the shield of the coax feed line. It is constructed using 10 bifilar wraps on the toroid core using approximately 4 feet of wire.

For other projects I decided to use the same FT-240-K core with 18AWG wire covered in 16AWG PTFE insulation. While the 18AWG has less power handling capability, it should be more than adequate for 100W usage as well as being cheaper and easier to work with.

4-1 Balun (2)4-1 Balun (1)The first balun I made using these materials was a 4:1 current balun. This balun is intended to transform a 200 Ohm load for use with a 50 Ohm coax feed line. This type of balun is commonly used in 4-1 Balun (3)Off-Center-Fed dipole antennas because the feed-point is placed at the location on the antenna where the impedance is approximately 200 Ohms on multiple bands. I intend to use this balun as part of a 6 meter collinear antenna that I am building. The balun is constructed using two sets of 8 bifilar wraps on the toroid using approximately 8 feet of wire. Each pair of windings is then wired in series with the other pair. This design can be thought of as two 1:1 baluns wired in series and in fact an alternate design of this balun uses two separate 1:1 balun cores wired in series to achieve the same affect.

9-1 Unun (2)9-1 Unun (1)Next I made a 9:1 unun for use with an end-fed antenna I am building. End-fed antennas exhibit very large impedances and consequently require considerable impedance transformation to 9-1 Unun (3)get the feed point within the range of an antenna tuner. Unlike a dipole, an end-fed antenna is unbalanced and therefore an unun is used instead of a balun. This design uses 8 trifilar wraps on the toroid using approximately 6 feet of wire. Each wrap is then wired in series to create the desired impedance transformation.

1-1 Line Isolator (2)1-1 Line Isolator (1)I also made another 1:1 balun. The main difference here is that I constructed it using two SO-239 connectors because I intend it to act as a coaxial feed line isolator. My plan is to use this in conjunction 1-1 Line Isolator (3)1-1 Line Isolator (4)with the 9:1 unun as part of my end-fed antenna project. The idea here is that a section of coax from the 9:1 unun acts as the counterpoise for the end-fed antenna and the line isolator is used to choke the RF current in the shield of the coax and allow the remainder of the feed line to continue to the antenna tuner without risk of radiating RF.

For all of these projects you can see that I used colored electrical tape to mark the various windings. This is essential to keeping track of the wiring and assuring that the windings are wired together correctly. For all of these I also used standard NEMA 4X 4″x4″x2″ plastic electrical boxes which are cheap and commonly available. I also used 10-32 stainless steel hardware for the antenna connections and silver-teflon SO-239 connectors.

Leave a Reply

Your email address will not be published. Required fields are marked *