Ham Radio EMCOMM Go Kit – Power Box

In the months since completing my revised go kit earlier this year, I have been considering building an improved version of my battery box. I wanted to use the same style of rack case that I used for my go kit and at the same time add a lot of versatility and functionality compared to what my basic battery box offered.

Goals

  • Reduced Weight
  • 12V Power Output
  • 12V Charging, Switching and Distribution in the Box
  • 120V Power Output
  • Battery Voltage & Current Monitoring
  • Solar Compatible

Battery

Reducing weight meant moving away from the lead acid battery that I used previously. These work fine and are not overly expensive, but they have a lot of limitations. My battery box used a deep cycle battery that weighs about 55 pounds. This new build uses a Bioenno 40Ah lithium-iron-phosphate battery that weighs about 10 pounds. It is also significantly smaller and can supply power for a longer period than my old battery. These batteries are not inexpensive ($360), however, they should last through significantly more charge-discharge cycles than a lead acid battery and when combined with the weight and space savings these benefits justify the price.

PWRgate

To handle the battery charging, power switching, and solar power requirements I used the West Mountain Radio Epic PWRgate. This device is a major step in evolution compared to other power gate products in the past. Older units could automatically switch power between a battery and power supply in addition to trickle charging the battery when the power supply was on, but they were only compatible with lead acid batteries. The Epic PWRgate supports multiple battery chemistries and charge rates, making it much more versatile (you select the battery chemistry and charge rate by removing the cover and setting two jumpers to the appropriate values). It is also much more efficient with a reduced voltage drop and no large heatsink. It can take inputs from a power supply, battery, and solar panels while it simultaneously outputs power. Depending on the state of each it can charge the battery from the solar panel or power supply, or direct battery power to the output if the power supply is unavailable. To complete the DC output power distribution system I used the 5 port West Mountain Radio Rigrunner from my old battery box.

Inverter

While not always required, I wanted to have the option to power or charge devices that use 120V. To accomplish this I added a Samlex 300W Pure Sine Wave Inverter to the system. While this is a fairly low wattage for an inverter, the intent of this is to power devices such as laptops, monitors, HT battery chargers, etc. that don’t require a lot of current. I went with a pure sine wave model since they produce much cleaner power, which should help reduce RF noise as well as work better with whatever electronics I am using.

Power Monitoring

For battery voltage and current monitoring I used a standard 1.125″ digital DC Voltage Meter and a Blue Sea Systems Shunt Current Meter. This current meter can measure current in both directions which allows me to monitor both the current draw under load as well as the charge current depending on how I am using the system at that moment. I wired the power inputs for both meters through a switch so that when I don’t need to monitor the state of things I can turn off the meters. This is very handy at night when you may not want bright LEDs shining in your face.

Wiring

The DC power wiring consists of an inline Maxi Fuse Holder connected to the battery’s positive terminal. I used a 50A fuse for the main feed and 8AWG wire. This is routed through the current meter shunt and into a 4 circuit Blue Sea Systems ATC Fuse Block. I used 2 of the circuits:  a 30A, 10AWG feed goes to the PWRgate and a 2A, 16AWG feed is used for the meters. The battery’s negative terminal was connected directly to a Blue Sea Systems Busbar. The inverter was wired directly to the current meter shunt and the common busbar. I also ran a ground wire from the inverter ground terminal and through the hole in the back panel. This wire was terminated with a green powerpole for easy connection to a ground rod and serves as a safety ground for the AC circuit.

Construction

The case itself is very similar to that used in my go kit, except this box is a 3 unit shallow case instead of a 4 unit. The shelf is the same model used in my go kit. All of the components were mounted to the shelf using 8-32 & 10-32 machine screws. I had to get a little creative to figure out how to secure the battery to the shelf. In the end I used 3 heavy duty jumbo wire ties to cinch the battery to the shelf and 2 nylon spacers secured with 10-32 machine screws to prevent the battery from sliding laterally under the wire ties. So far this arrangement seems very secure.

The front and back panels were made using 11/64″ thick sheets of ABS plastic. The front panel required notching in the bottom corners to allow for the shelf mounting screws as well as ventilation holes for the inverter fan. The back panel features a large cutout for the inverter outlet & switch and serves as the mount for the PWRgate & Rigrunner. I also added section of 1″ aluminum angle to the back panel which adds a lot of rigidity and prevents flexing when power cables are plugged and unplugged. One unforeseen modification involved the rear case lid. Since the PWRgate is mounted in the center of the case, it’s powerpole connections protrude just enough to make contact with the center brace of the lid. I debated moving things around, but in the end I notched the lid brace using my Dremel and a small cutting wheel. Due to the tight packaging, the jumper wire from the PWRgate to the Rigrunner has to be removed when putting on the lid.

Go Kit Integration

Since the PWRgate is now separate from my go kit I had to modify my go kit’s power wiring to accommodate this new arrangement. This involved adding a powerpole distribution block and permanently mounting the power supply output to the case. For full charging and battery backup capability jumper wires have to be run between the power supply in my go kit to the PWRgate and from the Rigrunner to the new distribution block in my go kit. I tried to organize my jumper cables the best I could to keep things as neat as possible and I used very flexible 10AWG wire with silicone insulation to minimize any cable stress and tangling. When stacked, the two units integrate together very well.

Weight

All together the power box weighs just under 31.5 lbs which is pretty good in my opinion. I’ve added both capacity and a huge amount of capability compared to my old battery box and it still only weighs about half as much.

2 thoughts on “Ham Radio EMCOMM Go Kit – Power Box”

    1. Jeff,

      All told it’s about $1000. The biggest costs are the battery, inverter, pwrgate, and case. You could simplify this design and save a fair amount of money by eliminating the inverter, using a smaller battery, or simplifying the power distribution and monitoring.

Leave a Reply

Your email address will not be published. Required fields are marked *